EMC-KCM Mathematics

Good morning, mathematicians!

- As you come in, please use the post-it notes to share what happened when you did the research lesson. Place a note on each of the 4 posters on the walls.
- If a category doesn't apply, put up a small blank post-it.
- We are looking for data: No names necessary.

Reflecting on the Napping House research lesson

- In small groups, review and then summarize the comments on one of the topics.
- Share out --Group discussion

Session 3: Number Sense & numerosity

(Adult Learning Experience)

Shepherd's Counting System

(Adult Learning Experience)

Shepherd's Counting System

- What do you notice about these number names?
- How does this number system compare with the base 10 system we use?
- Turn to a partner and talk about your ideas.
- Share your thinking with the rest of the people at your table.

(Adult Learning Experience)

Working with a partner to explore how this number system works

- 1. Use the cubes to represent these quantities: "bumpit," "yan-a-pimp" & "tethera-dik"
- 2. Draw a picture to show "tan-a-figgit" sheep.
- 3. Work to create written symbols to represent this number system.

(Adult Learning Experience)

A new shepherd has just arrived from distant parts and needs to learn how to count the sheep and keep track of the quantity.

- 1. Work with the people at your table to create a *poster to explain how this number system* works.
- 2. Include any *questions* you have about this number system.

(Adult Learning Experience)

Gallery Walk of Posters

- You now have a few minutes to look at the posters made by other table groups.
- Examine at least one poster carefully & consider what questions or comments you have about the math you see. (If time permits, move on to another poster.)
- Use your sticky notes to leave comments or questions on the poster(s) you examine.
- Put at least one sticky note on each poster you examine.

Let's Talk About It

- 1. Poster session conversation
- 2. Reflecting on New Understandings
 - What have we learned about numbers in general?
 - What have we discovered about doing math?

Fixed Sequence

Our number systems use a fixed sequence that allows for predictability.

$$N+1=?$$

$$N+2=?$$

- Because we group by tens, we can represent all numbers using ten digits (0 to 9).
- There are patterns to how numbers are represented.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Function of Zero

NON VALE UNO ZERO Essere una nullità

Function of Zero

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

pethera pimp tan tethera yan tan-a-pimp tethera-pimp pethera-pimp dik yan-a-pimp yan-a-dik tan-a-dik tethera-dik pethera-dik bumpit yan-a-bumpit tan-a-bumpit tethera-bumpit pethera-bumpit figgit

Let's Count Using Shepherds' Numbers

tan tethera pethera pimp yan yan-a-pimp tan-a-pimp tethera-pimp pethera-pimp dik bumpit yan-a-dik pethera-dik tan-a-dik tethera-dik yan-a-bumpit tan-a-bumpit tethera-bumpit pethera-bumpit figgit

How Do Children Develop Understanding of Numerosity & Number Sense?

What are the *Big Ideas*?

A Big Idea

 Quantity is an attribute of a set of objects & we use numbers to name specific quantities.

 The problem with arithmetic problems is that they are filled with naked numbers.

Problems with Naked Numbers

- Naked Numbers don't invite conversation

 - There is no such thing as 3 or any other number!
 - There are always 3 of something
 - Number is an ATTRIBUTE—an adjective not a noun
 - In math this attribute is called NUMEROSITY

3 elephants might seem obviously bigger when compared to 3 mice

 BUT for the attribute of number/ numerosity they are identical

Number Names and symbols are arbitrary

- Numerosity or quantity remains the same, no matter what system
- There are san mice and III elephants that makes yan-a-pimp animals!

- A collection can have many Attributes.
- Roses: red color is an attribute, round shape is an attribute, sweet smell is an attribute, quantity is another attribute. There are three roses here.

A Big Idea

Our brains are hardwired to perceive small quantities without counting (subitizing).

Numerosity exists apart from number names & symbols

What can you see quickly?

Perceptual Subitizing

- You perceive the three or four dots simultaneously.
- You "just know."

Conceptual Subitizing

- You perceive the parts and put together the whole.
- All of the this happens quickly and often is not conscious—it is still subitizing."

A Big Idea

A given quantity can be composed and decomposed in a variety of ways.

Acting Out Number Arrangements

Big Ideas and Key Skills in Numerosity and Number Sense

Big Ideas Key Skills Quantity is an attribute of Naming the quantity of a set of objects & we use sets numbers to name specific **Conceptual subitizing** quantities. Small collections can be intuitively perceived without counting. Fluency in composing A given quantity can be composed and and decomposing decomposed in a variety numbers of ways.

Video Analysis

Focus on the Child: Visual Number Sense

 What do you notice about how children perform this task?

Video Analysis

Research Lesson: Number Arrangements

- What is the mathematical learning for these children?
- What did the teacher do and say to support children's learning?

Try and Apply

Research Lesson

Number Arrangements

How might this work in your classroom?

