Welcome to Learning Lab # 9 of Erikson Early Math iNNOVATIONS!

Greetings!

Obstacle Course

Rosie's Walk

by Pat Hutchins

A Big Idea about Spatial Relationships

Relationships between objects and places can be described with mathematical precision.

A New Route for Rosie: A Math Investigation for Adults

- On a coordinate grid, map out a new route for Rosie to walk. The route must include three places for Rosie to visit.
- Move to sit with a partner from another table.
- With a barrier to hide the maps from each other, one partner describes her/his map while the other tries to draw it. The drawer may only ask two clarifying questions.
 - Switch so each person gets a turn in each role.
- Did you learn anything from the 1st round of the game that changed how you played the 2nd?
- How far does Rosie have to travel to complete the route on your map?
 - Can the map you made tell you?
 - What do you need to know to figure that out?

A Big Idea about Spatial Relationships

Our own experiences
of space and
two-dimensional representations of space
reflect a specific point of view.

Introducing the HIS-EM framework

High-Impact Strategies for Early Mathematics (HIS-EM)

QUALITY of Math Teaching

WHAT?

- Learning Objectives
- Mathematical Representations
- Concept Development

WHO?

- Attention to Developmental Trajectories
- Response to Students' Individual Needs
- Developmentally Appropriate Learning Formats

HOW?

- Planning
- Student Engagement
- Establishment of a Mathematical Learning Community

The HIS-EM framework considers three *domains* when examining the quality of math teaching:

- WHAT? The degree to which teaching practice incorporates a deep knowledge of foundational mathematics concepts.
- WHO? The degree to which teaching practice demonstrates an understanding of young children's typical developmental growth in mathematics and an understanding of particular, individual students' learning needs.
- HOW? The degree to which teaching practice includes the effective use of mathematics teaching strategies.

Each of the three *domains* is further defined by three *dimensions* that make a significant impact of the quality of mathematics teaching and learning in the classroom.

(See the chart in your handouts for further explanation.)

Introducing a new activity plan form that reflects the HIS-EM framework.

Video Analysis: Planning Conversation An interview with the Coach

- What do the teacher & coach decide to focus on?
- Why did they make that choice?

Video Analysis: "Walk with Rosie"

Teacher Practice (HIS-EM): Mathematical Representation

High-Impact Strategies

- Teachers model students' thinking.
- Teachers scaffold as students explain or model their own thinking.

Student Practice (Common Core)

#4: Model with mathematics.

#6: Attend to precision.

Video Analysis: Evidence of Practice

- Are the mathematical representations accurate?
- Do they help students make sense of mathematical ideas?

Video Analysis: Mathematical Representation

Tangram Time

- We start by making our own.
- Can you put it back into a square?
- Can you make your first initial?
- Can you complete one of these puzzles?

A Big Idea about Spatial Relationships

Spatial relationships can be visualized & manipulated mentally.

Big Ideas of Spatial Relationships

Topic	Big Ideas	Examples
Describing Space	 Relationships between objects and places can be described with mathematical precision. 	 Maps and models represent the 3-dimensional world. Joshua is in front of Ana, and he is behind Tameika.
Visualizing Space	 Our own experiences of space and two-dimensional representations of space reflect a specific point of view. Spatial relationships can be visualized and manipulated mentally. 	 A party hat looks triangular from the side, but when you lay it down, it can look like a circle. An expert jigsaw-puzzle solver can picture a missing piece and does not rely on trial and error.

Reflecting on today's learning ...

Have a restful winter break a happy start to the New Year!

We'll see you again at Erikson on Friday, February 1, 2013.

